Rules Based Routing and Long Running Transaction Orchestration Service
· Business rules account for some of the most complex and frequently changing code 
· Long running transactions are challenging to implement and manage

· This service demonstrates how a rules engine can be used to move the rules outside of code, and how making the engines memory persistent allows managing long running transactions
Consider the following process of issuing a life insurance application (it is a bit simplified but realistic).  
1. Customer sends an application
2. The application must have a signed authorization form to allow the company to search person’s medical records

IF authorization form is missing THEN

Change app status to INCOMPLETE 
Send letter to the customer asking to resubmit
ELSE

Change app status to VALIDATED
It may take the customer several days or even weeks to resubmit the app so it is a long running transaction!  While we are waiting, the original application and the transaction context must be persisted and remain active.  

3. The customer resubmits the app with a signed form. Now we can order a medical report from a medical information vendor.  Some vendors have an online database and return results immediately, but others interview the applicant over the phone, may order some tests, etc.  The medical report may take days or weeks to receive.  That’s another long running transaction.
4. When the medical report arrives, it will have a list of medical conditions and a risk score.  

IF risk > 500 THEN


Change app status to DELINED


Send DECLINE letter to the customer

ELSE


Change app status to APPROVED


Issue a Policy

This example shows that this process is full of business rules and long running transactions.  One way to manage it is with a workflow system, another way is with a rules engine such as Drools.  JBoss Drools is a powerful forward chaining engine that uses the efficient Rete algorithm modified to work with facts represented as Java objects.  Google “Drools tutorial” for a quick introduction to Drools.
Supplying Facts to the Rules Engine

It is common for insurance companies to scan every application, check, form, and other mail into an imaging system (such as FileNet), pass it through Optical Character Recognition (OCR) or manual data entry, and insert the data into some workflow system that “knows” how to rout it between workers.  Similarly, every relevant document can be represented with XML and given to the rules engine that will decide what to do which it.  
For instance the application data may be represented as the following XML and placed on the entry point of the Rules Engine Service that will insert it into the rules engine’s working memory.  
<application>


<number>12345</number>


<status>1</status>


<authorizationFormAttached>false</authorizationFormAttached>


<applicant-info>



<first-name>John</first-name>



<last-name>Smith</last-name>



<ssn>999999999</ssn>



<address>




<line1>123 Main Street</line1>




<line2></line2>




<city>Philadelphia</city>




<state>PA</state> 




<zip>12345</zip>



</address> 


</applicant-info>

</application>

Similarly the XML representation of an authorization form, a medical report, and other information will be placed on the entry endpoint.  The rules engine will process these new “facts” and execute rules accordingly.  Some of these rules will invoke other ESB services hence “Rules Based Routing”.  

Persisting Rules Engine Working Memory Contents

The only drawback of the Drools engine is that the contents of its working memory are temporary and can not survive a system restart or a crash.  Fortunately, Drools implements the Observer pattern and allows attaching a listener to the working memory.  This service creates a special listener that keeps track of every object that is inserted, updated, or deleted, and makes a corresponding change in the database.  Typically, an Oracle or MySQL database would be used, but this demo keeps things simple and uses an embedded HSQL pure Java database to avoid any need for administration and configuration.  Making the working memory of the engine persistent allows managing long running transactions.  
Rules Syntax and Drools DSL Capabilities
Typically rules are written using a combination of a special notation and Java:
when

application : Application(
status == ApplicationStatus.NEW && 

authorizationFormAttached == false)

then


System.out.println(

"New application found but it is missing an authorization form.")

LetterRequest request = new LetterRequest();

request.setType(LetterTypes.AUTHRIZATION_FORM_REQUEST);

request.setRecipientInfo(application.getApplicantInfo());

EndpointManager.send(Endpoint.LETTER_SERVICE, request);

application.setStatus(ApplicationStatus.INCOMPLETE);

end 

They are clearly externalized and easy to read to a Java developer but not to a business user.  Fortunately, Drools allows defining a Domain Specific Language to express rules in natural language format.  It is basically a properties file that specify how to “expand” English into Drools and Java: 
Say "{message}"=System.out.println("{message}");

Send {letterType} letter to applicant=

LetterRequest request = new LetterRequest(); request.setLetterType(LetterType.{letterType}); request.setRecipientInfo(application.getApplicantInfo()); EndpointManager.send(Endpoint.LETTER_SERVICE, request);
Change application status to {status}=

application.setStatus(ApplicationStatus.{status}); update(application); System.out.println("Application status changed to " + 

application.getStatusName());

The mechanism is a very simple preprocessor but the results are impressive.

Now the same rule looks like the following:  
when


There is an application in NEW status



- without authorization form

then


Say "New application found but it is missing an authorization form."



Send AUTHRIZATION_FORM_REQUEST letter to applicant 



Change application status to INCOMPLETE

end 

The complete set of rules can be found in Appendix A.

Deploying the Rules Based Routing Service (RBR) and the Demo Application 
This submission includes the RBR (Rules Engine) Service that is independent of any business use cases, and a separate Demo Insurance application.  The Demo Insurance project defines the Java objects used to describe business concepts (Application, Address, etc) and ESB services that are involved in various business activities (letter sending service, policy issue service, and medical report service).  
Prerequisite:

· This document assumes that the custom service and related projects were imported into the Sonic Workbench

[image: image1.png]Select

Create new projects from an archiv fileor drectary.

Select an import source:

type fiter text

5 & General

G, avchive e
o2 Breakpoints.
L Existing Projects into Workspace.
5, Fle System
. preferences

Eos

& Plugin Development

& Team

& other





Click Next

[image: image2.png]Import Projects

Select a directory to search for existing Ecipse projects.

O select oot drectory; Browse.

© Select archive file:

HRBRServizeAndDemalnsurance_3_3_2008.2p [ sromse.

Projects:

Demalnsurance

Select Al
RERService
seloct Al

esh

Copy projects nto workspare.

<Back Next > Erish Cancel




· The following custom services need to be uploaded by double clicking on the *.esbstyp file and clicking the “Upload the Java Service to the Sonic Domain and create a default instance” button:

DemoInsurance Project (located in src/demo/insurance/customj)

· LetterServiceType.esbstyp

· MedicalReportServiceType.esbstyp

· PolicyIssueServiceType.esbstyp

RBRService Project (located in src/demo/soa/esb/rulesengine/customj)

· RBRServiceType.esbstyp

Double click on the esbstyp file and click Upload
[image: image3.png]© Mo the Java Srvice o the Somc Dornan nd create a efau mstance |





[image: image4.png]Service Configuration

Configure Service
Upload the service type ito the Sonic Domain and create a default
service instance

Service Type and Name
Service Type

Service Name ;| RERServicelnstance.

Ink Parameters

Name

Restore Defauts

Concel





Click OK

[image: image5.png]2. Upload Service Type.

it servce stance o the v tye Ry shesdy et
2) T Gde e et e etance. Conr





Click Yes 

[image: image6.png]Upload Service Type.

Successfully uploaded RERService service type and created a dsfauk nstance
RERServicelnstance in the container dey_FSBTes.

The cantainer mst be restarted t test tis servics, Would you ke o restart
the cantainer naw?





Click No (the container can be restarted later)
Repeat for all services mentioned above

The services should now be visible on the Configure tab of the Management Console under the Services branch

[image: image7.png](=24 Services
@ tPEL service
@ Content-8ased Routing
@ Database Service Type
@ DicrepancyService
@ EsBlogging EnorLogaingservice
@ ESBUN_Concatinatonervice
@ ESBUL CopyPartToPrapertyservice
@ ESBUN FleDropervice
@ ESBUN SetPropertyservice
@ FieDrop
@ i Pidun

B Letterservice

3 HedicaReportservce

B OrderEntry_IMLKORDFsmecer
@ Poleylssueservice
Serice





The endpoints are also automatically added

[image: image8.png]Endpoints | Connections.

Endpoint Name.

FTPConnector Ext

jns_defaulConnection





The setup will consist of two tasks:

· Add required JARs to the classpath of the ESB (XQ) container

· Restart the dev_ESBTest runtime (MQ) container

Add Required JARs to the Classpath

On Configure tab, expand the ESB Containers collection, right click the dev_ESBTest ESB container where the service is deployed and click Properties

[image: image9.png]#] Configure | [ Manage

Configured Objects

9 dev_Oserverrss
9 dev_OserverTest
9 dev MserverTest
9 Domaintanager
9 OrdersystemContainer
9 verficatonContaier
5 24 ESB Containers
@ devepeL
@ dev EsCore
dev EstTes-
¥ oyt BT
@ dev 0%l 3 pefresh

dev_x0er P
g Dicapaney O Geto Manage

@ esour _E50)

i
B OrderEntry

Letterse
IMedical
lPolcylss
IRERSery

(@ EsBlogang,  Menagement Securty... b




The system will respond with the following screen 

[image: image10.png]Edit Sonic ESB Contai

Resources

ner Properties

Contaner Informatian

*Mame:

*Intra-Container Messaging:

E5B (2M15) Connection;

HTTP Rouing Connection:

dev_ESBTest

jms_defaulConnection

hitp_defaultConnection





Switch to the Resources tab 

The only two entries that will initially be there is the custom-services-classes.jar of the RBRService and the DemoInsurance projects
[image: image11.png]1 Edit Sonic ESB Container Properties

archive

Archive Name:

ESB/7.S{ESBcontainer.car

Prepend Classpath

Classpath

add)

sonictsjworkspace/Demolnsurancelb/custom-services-classes. ar
sonicts:jworkspace/RERServicelbjcustorm-services-classes.jar

Edt

Remove

Mave L

Move Down





Click Add

The system will respond with the following screen

[image: image12.png][ #dd Classpath.

Path:





Click … button

Select ALL jars from workspace/RBRService/external

DO NOT select any jars from workspace/RBRService/sonic-lib (they are provided only for building convenience, at run time they are already available by default)

[image: image13.png]& Choose Classpath Filk
OriineBark a
rierEntry
OrderEntryirt

RERService

® 00 v
< 3

il fikers: [ jor, *war, *.2p v





Click OK

[image: image14.png]£ Add Cla

path

Pathy | nics:{{jworkspace(RERService/extemalf-2.4.2jar |[-]

[ ok [ concel |





Click OK

[image: image15.png]T Edit Sonic ESB Container Properties
General| Resources
archive

Archive Name: | ESB{7.S/ESBeontaner.car

Prepend Classpath

Classpath
sonictsjworkspace/Demolnsurancelb/custom-services-classes. ar
sonictsworkspace/RBRServiclibjcustorm-services-classes. jar

sonictsworkspace/RBRServicejexternaljdrools-decisiontables-4.0.4.jar
CricilinotopscaRRsoiosarnaihod

saricfsifjworkspace/RBR Servicefexternalfjaning-2.5. 10, ar
sonicts{jworkspace/RERServicejexternalercesimpk2.4.0.jar
sonictsjworkspace/RBRServicejexternafsr94-1. . jar
sanictsiffworkspace/RBR Servicefexternaljmvel14-1.2.21. far
sonictsjworkspace/RERServicejexternaljcommans-togging.jar
sonictsjworkspace/RBRServicejexternaljcore-3.2.3.v_686_R3zx.jar
sonictsjworkspace/RBRServicejexternaljdrools-core-+.0.4.jar
sanictsiffworkspace/RBR Servicefexternaljcastor-0.9.9. . far
sonictsworkspace/RBRServicejexternaljpp3-1.1.3.4.0.jar
sanictsifjworkspaceRBR Servicefexternaljactvation.ar

<





Click OK

Restart the dev_ESBTest Runtime (MQ) Container or start it if it is down.  While the management console can be used most of the time, the Eclipse IDE is also convenient for starting the container and viewing the log.
[image: image16.png]navigator I B, Packae Explorer

5 @ Containers

1= Py
=l gov espcoe
L dev Fichicun

E dovcon

B dov.ransform
3« P

B devspiier
B dovsoreacn
7 dovsporael

=@
Letterser: {8y Add service
3 RoServe G onfgue Clsspth
B e I
E polcytssu
& [l dev_oserven B S0P

7 dov 50 5] Viw Coainer Log
< [l sev_oserver” [E] Reset Coainer Lo
=y





You may “Reset Container Log” for convenience to start with a fresh container log and be able to see the output of the demo more clearly.
At this point, the setup should be complete and the project should be ready for testing
Testing the RBR Service and the Demo Insurance Application
Start the JMS Test Client
Connect to tcp://localhost:2506 default admin broker (typically, admin broker would not be used for application development, but for this demo it should be ok)
Create a Topic session called Demo
[image: image17.png]2 JMS Test Client
Fie vew Hep

Wessage rokers

Create New Session

Name: | Demo

Greate

TYPe! [Topic

[ Trensacted
Adnowedgrent Mode
@ Auto Acknowledged
O Client Acknomledged
© Duplcates OK Acknowledge

Establshed Sessions

Close

Commit

Rolback

Recoer





Create a publisher for RBRServiceInstance.Entry topic
[image: image18.png]2 JMS Test Client
Fie vew Hep

Message Brokers
tep:jfocalhost:2506:Local Adrinistrator

® RERServicelnstance Entry
® subscribers

Create New Pubisher:

Topict| RERServicelnstance Entry

Greate

Establshed Publshers
RERServicelnstance. Entry





Post a text message with the following contents (copy and paste)
<application>


<number>12345</number>


<status>1</status>


<authorizationFormAttached>false</authorizationFormAttached>


<applicant-info>



<first-name>John</first-name>



<last-name>Smith</last-name>



<ssn>999999999</ssn>



<address>




<line1>123 Main Street</line1>




<line2></line2>




<city>Philadelphia</city>




<state>PA</state> 




<zip>12345</zip>



</address> 


</applicant-info>

</application>

Click Send

[image: image19.png]2 JMS Test Client
Fie vew Hep

| ) Message Brokers
tep:jfocalhost:2506:Local Adrinistrator

® subscribers

Header | Properies| B0dy |

tached>

<application>
<nmumber>12345</ muber>
<status>1</status>
<authorizationFormhttached>false</author izationFormit

<applicant-info>

<first-name>John</first-nane>

<last-name>Swith</ last-nane>

<95n>999999959</ s3n>

<address>
<line1>123 Main Street</linel>
<linez></linez>
<city>Philadelphiac/city>
<statesPh</state>
<2ip>12345</2ip>

</adaress>

</applicant-info>
</application>

Summary:

Message Type:

Delivery Mode:

priarity:

Time Ta Live (ms):

Text Message

NON_PERSISTENT

n

o





The XML goes to the Rule Engine Service.  The service converts it to a Java object and inserts it into the working memory of the rules engine.  Based on a rule in the DRL file, the engine determines that the authorization form is missing.  The engine calls the Letter Service to notify the customer (simulates the sending of the letter by printing a letter icon) and changes the status of the application to INCOMPLETE.  See the log fragment bellow for more details.
View the Container Log
[image: image20.png]=@
Lot (B A Servce
EE Remserv B9 Confgure Clsspath
E Moo G rostrt

Elrae: oy
[N et L

3 dev.0ser
=@

earen [E] Reset Contaner Log





The output should look like the following (sometimes the container log does not refresh so close dev_ESBTest.log each time and click “View Container Log” every time you need to view a log) 
The following statements show that the RBR service is initialized.  Since this is the first time we are running the service, the database used to persist Drools facts did not exist and had to be created

…

[08/03/03 14:15:50] ID=dev_ESBTest (info) [RBRService] Initializing ...

Created a database for storing working memory facts

Selecting data from persisted facts table

Done

…
Few lines later, we see the rules engine output:

New application found but it is missing an authorization form. Send letter to customer requesting the form

[08/03/03 14:17:48] ID=dev_ESBTest (info) [LetterService] Processing message ...

[08/03/03 14:17:48] ID=dev_ESBTest (info) [LetterService] Processing message parts...

[08/03/03 14:17:48] ID=dev_ESBTest (info) [LetterService] Processing message part 0

[08/03/03 14:17:48] ID=dev_ESBTest (info) Sending a letter of type AUTHRIZATION_FORM_REQUEST

[08/03/03 14:17:48] ID=dev_ESBTest (info) To: John Smith

[08/03/03 14:17:48] ID=dev_ESBTest (info) Address: 123 Main Street

[08/03/03 14:17:48] ID=dev_ESBTest (info) 



[08/03/03 14:17:48] ID=dev_ESBTest (info) 

Philadelphia

[08/03/03 14:17:48] ID=dev_ESBTest (info) 

PA

[08/03/03 14:17:48] ID=dev_ESBTest (info) 

12345

[08/03/03 14:17:48] ID=dev_ESBTest (info) **************************************
[08/03/03 14:17:48] ID=dev_ESBTest (info) * *                                * *

[08/03/03 14:17:48] ID=dev_ESBTest (info) *   *                            *   *
[08/03/03 14:17:48] ID=dev_ESBTest (info) *     *                        *     *

[08/03/03 14:17:48] ID=dev_ESBTest (info) *       *                    *       *
[08/03/03 14:17:48] ID=dev_ESBTest (info) *         *                *         *

[08/03/03 14:17:48] ID=dev_ESBTest (info) *         * *            * *         *
[08/03/03 14:17:48] ID=dev_ESBTest (info) *       *     *        *     *       *

[08/03/03 14:17:48] ID=dev_ESBTest (info) *     *          *   *         *     *
[08/03/03 14:17:48] ID=dev_ESBTest (info) *   *              **            *   *

[08/03/03 14:17:48] ID=dev_ESBTest (info) * *                                * *
[08/03/03 14:17:48] ID=dev_ESBTest (info) **************************************

Application status changed to INCOMPLETE

Now, assume that the customer got the letter, signed the form and mailed it back to the insurance company.  The form will be scanned, data will be entered, and the XML representation will be posted to the Rules Engine.  Copy and paste the following XML into the JMS test client and click Send
<authorization-form>


<reference-number>12345</reference-number>


<signed>true</signed>

</authorization-form>
[image: image21.png]2 JMS Test Client
Fie vew Hep

| ) Message Brokers

tep:jfocalhost:2506:Local Adrinistrator

® subscribers

Header | Properies| B0dy |

<authorization-form>
<reference-nurber>12345</ reference-number>
<signed>true</signed>
</authorization-form>

Summary:

Message Type: | Text Message

Delvery Mode: | PERSISTENT

priarity: 4

Time To Live (ms): | 0





Close the log and reopen it again by selecting “View Container Log”
The output should look like the following:

The rule engine will determine that the form has arrived, match it to an application that is waiting for it, and change the status of an application to VALIDATED.  

…

Signed authorization form found

Application status changed to VALIDATED


authorizationForm is no longer needed in working memory and was retracted

Now another rule will determine that the application is now valid and the medical report can be ordered.  As a result, the Medical Report Service will be called and the status of the application will be changed to WAITING_FOR_MEDICAL_REPORT
Valid application found, medical report will be ordered

…
[08/03/03 14:25:45] ID=dev_ESBTest (info) Requesting Medical Report for: John Smith

[08/03/03 14:25:45] ID=dev_ESBTest (info)         **********
[08/03/03 14:25:45] ID=dev_ESBTest (info)         *        *

[08/03/03 14:25:45] ID=dev_ESBTest (info)         *        *
[08/03/03 14:25:45] ID=dev_ESBTest (info)         *        *

[08/03/03 14:25:45] ID=dev_ESBTest (info) *********        **********
[08/03/03 14:25:45] ID=dev_ESBTest (info) *                         *

[08/03/03 14:25:45] ID=dev_ESBTest (info) *                         *
[08/03/03 14:25:45] ID=dev_ESBTest (info) *                         *

[08/03/03 14:25:45] ID=dev_ESBTest (info) *********        **********
[08/03/03 14:25:45] ID=dev_ESBTest (info)         *        *
[08/03/03 14:25:45] ID=dev_ESBTest (info)         *        *

[08/03/03 14:25:45] ID=dev_ESBTest (info)         *        *
[08/03/03 14:25:45] ID=dev_ESBTest (info)         **********

Application status changed to WAITING_FOR_MEDICAL_REPORT

Now assume that the ESB server had to be restarted for maintenance and all runtime information was lost (Restart the dev_ESBTest container to simulate that)
[image: image22.png]=
Bom= B add sevice
RERSery B Configure Classpath.
E edco v

3 policytss:

& [l dev_oserve
o e 1 i Coanr Lo

= [El dev_oserve [E] Reset Container Log

@ stop




Close the dev_ESBTest.log and open it again to view the latest log output (make sure the container is online)
Notice that the fact database was found and the facts (application object) was loaded into the working memory of the rules engine:

[08/03/03 14:34:05] ID=dev_ESBTest (info) [RBRService] Initializing ...

Found a fact database.  Loading facts into working memory

Selecting data from persisted facts table

Inserting persisted fact into working memory com.demo.insurance.to.Application{


number=12345


status=4


authorizationFormAttached=false


com.demo.insurance.to.PersonalInfo{



firstName=John



lastName=Smith



ssn=999999999



com.demo.insurance.to.Address{




line1=123 Main Street




line2=




city=Philadelphia




state=PA




zip=12345



}


}

}

Inserted 1 row

Done
Now, assume that the medical report agency got the request, obtained the medical information, determined the risk score and sent it back to the insurance company.  The XML representation will be posted to the Rules Engine.  Copy and paste the following XML into the JMS test client and click Send

<medical-report>


<reference-number>12345</reference-number>


<medical-condition>Migrane</medical-condition>


<medical-condition>Common Cold</medical-condition>


<risk>10</risk>

</medical-report>
[image: image23.png]2 JMS Test Client
Fie vew Hep

| ) Message Brokers
tep:jfocalhost:2506:Local Adrinistrator

® subscribers

Header | Properies| B0dy |

<medical-report>
<reference-nurber>12345</ reference-number>
<medical-condition>Nigrane</medical-condition>
<medical-condition>Common Cold</medical-condition>
<risk>10</risk>

</medical-report>

Summary:

Message Type: | Text Message

Delvery Mode: | PERSISTENT

priarity: 4

Time To Live (ms): | 0





Close the log and open it again to view the latest output:

One of the rules will detect the fact that the medical report is now available and the application can be approved or declined.  Since the score is less than 500, the application was APPROVED and a policy was issued by calling the Policy Issue Service

Medical report available

Application status changed to MEDICAL_REPORT_RECEIVED

Medical report has a risk score of less than 500

Application status changed to APPROVED


medicalReport is no longer needed in working memory and was retracted

Approved application found, need to issue a policy

…
[08/03/03 14:37:34] ID=dev_ESBTest (info) Issuing a Policy for: John Smith
[08/03/03 14:37:34] ID=dev_ESBTest (info) **************************

[08/03/03 14:37:34] ID=dev_ESBTest (info) *                        * *
[08/03/03 14:37:34] ID=dev_ESBTest (info) *                        *   *
[08/03/03 14:37:34] ID=dev_ESBTest (info) *           POLICY       *******

[08/03/03 14:37:34] ID=dev_ESBTest (info) *   _______________________    *
[08/03/03 14:37:34] ID=dev_ESBTest (info) *                              *
[08/03/03 14:37:34] ID=dev_ESBTest (info) *   _______________________    *

[08/03/03 14:37:34] ID=dev_ESBTest (info) *                              *
[08/03/03 14:37:34] ID=dev_ESBTest (info) *   _______________________    *

[08/03/03 14:37:34] ID=dev_ESBTest (info) *                              *
[08/03/03 14:37:34] ID=dev_ESBTest (info) *   _______________________    *
[08/03/03 14:37:34] ID=dev_ESBTest (info) *                              *

[08/03/03 14:37:34] ID=dev_ESBTest (info) *   _______________________    *
[08/03/03 14:37:34] ID=dev_ESBTest (info) *                              *
[08/03/03 14:37:34] ID=dev_ESBTest (info) *   _______________________    *

[08/03/03 14:37:34] ID=dev_ESBTest (info) *                              *
[08/03/03 14:37:34] ID=dev_ESBTest (info) *   _______________________    *

[08/03/03 14:37:34] ID=dev_ESBTest (info) *                              *
[08/03/03 14:37:34] ID=dev_ESBTest (info) ********************************


application is no longer needed in working memory and was retracted
HSLQ Database 
The database will be created in the C:/tmp/DroolsData folder and consists of a single table.  It occupies about 1MB and can be deleted after the test.  

